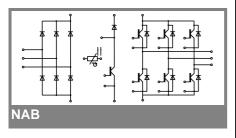


MiniSKiiP[®] 2

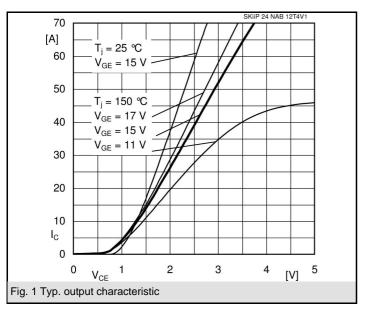
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter SKiiP 24NAB12T4V1

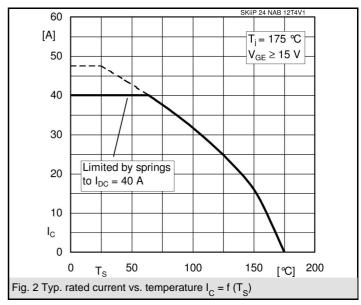
Features

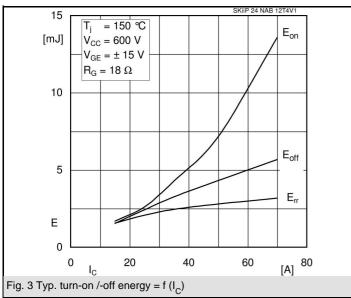

- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

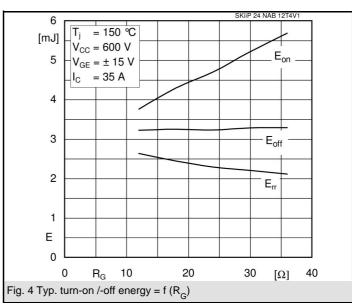
Typical Applications*

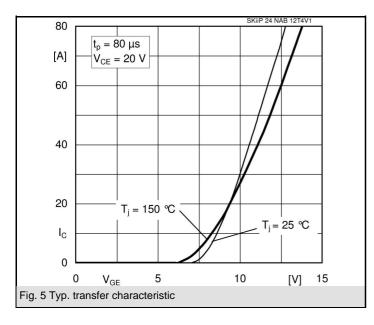
- Inverter up to 22 kVA
- Typical motor power 11 kW

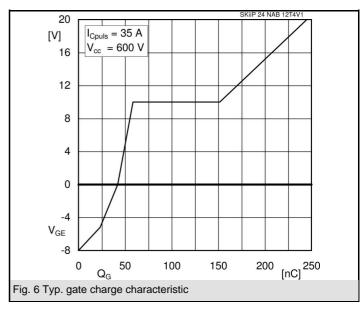

Remarks

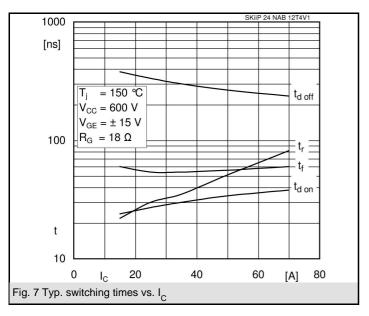

- V_{CEsat}, V_F= chip level value
 Case temp. limited to T_C = 125°C max. (for baseplateless modules $T_C = T_S$
- product rel. results valid for $T_i \le 150$ (recomm. $T_{op} = -40$... +150°C)

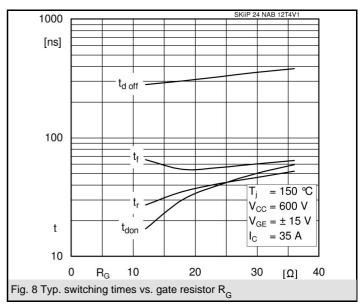


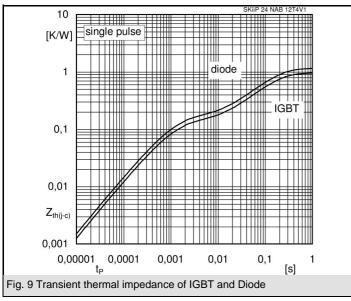

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified							
Symbol	Conditions	Values					
IGBT - Inverter, Chopper							
V_{CES}		1200	V				
I _C	T _s = 25 (70) °C	48 (39)	Α				
I _{CRM}		105	Α				
V_{GES}		± 20	V				
T_{j}		- 40 + 175	°C				
Diode - Inverter, Chopper							
I _F	T _s = 25 (70) °C	44 (35)	Α				
I _{FRM}		105	Α				
T _j		- 40 + 175	°C				
Diode - Rectifier							
V_{RRM}		1600	V				
I _F	$T_s = 70 ^{\circ}C$	46	Α				
I _{FSM}	t _p = 10 ms, sin 180 °, T _i = 25 °C	370	Α				
i²t	t _p = 10 ms, sin 180 °, T _i = 25 °C	680	A²s				
T _j		- 40 + 150	°C				
Module							
I _{tRMS}	per power terminal (20 A / spring)	40	Α				
T _{stg}		- 40 + 125	°C				
V _{isol}	AC, 1 min.	2500	V				

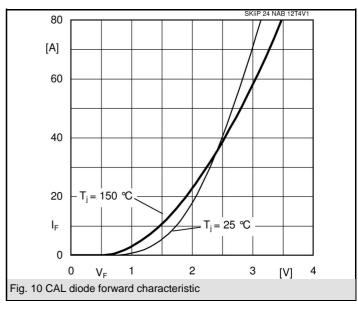

Characte	ristics	s = 25 °C, unless otherwise specified							
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, Chopper									
V _{CEsat}	I _{Cnom} = 35 A, T _i = 25 (150) °C		1,85 (2,25)	2,05 (2,45)	V				
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$	5	5,8	6,5	V				
V _{CE(TO)}	$T_j = 25 (150) ^{\circ}C$		0,8 (0,7)	,	V				
r _T	$T_j = 25 (150) ^{\circ}C$		30 (44)	33 (47)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,95		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,155		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,115		nF				
$R_{th(j-s)}$	per IGBT		1		K/W				
t _{d(on)}	under following conditions		30		ns				
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		35		ns				
t _{d(off)}	$I_{Cnom} = 35 \text{ A}, T_j = 150^{\circ}\text{C}$		300		ns				
t_{f}	$R_{Gon} = R_{Goff} = 18 \Omega$		55		ns				
E _{on}	inductive load		4,3		mJ				
E _{off}			3,25		mJ				
Diode - In	verter, Chopper								
$V_F = V_{EC}$	I _{Fnom} = 35 A, T _i = 25 (150) °C		2,3 (2,3)	2,6 (2,6)	V				
V _(TO)	T _i = 25 (150) °Ć		1,3 (0,9)	1,5 (1,1)	V				
r _T	$T_j = 25 (150) ^{\circ}C$		29 (40)	31 (43)	mΩ				
$R_{th(j-s)}$	per diode		1,2		K/W				
I _{RRM}	under following conditions		34		Α				
Q_{rr}	$I_{Fnom} = 35 \text{ A}, V_{R} = 600 \text{ V}$		5,6		μC				
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 150 \text{ °C}$		2,4		mJ				
	$di_{F}/dt = 1250 A/\mu s$								
Diode -Re	ectifier	•			•				
V_{F}	I _{Fnom} = 25 A, T _i = 25 °C		1,1		V				
V _(TO)	T _i = 150 °C		0,8		V				
r _T	T _j = 150 °C		13		mΩ				
$R_{th(j-s)}$	per diode		1,25		K/W				
Temperature Sensor									
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω				
Mechanic	al Data	1			1				
w	Ī		65		g				
M _s	Mounting torque	2		2,5	Nm				

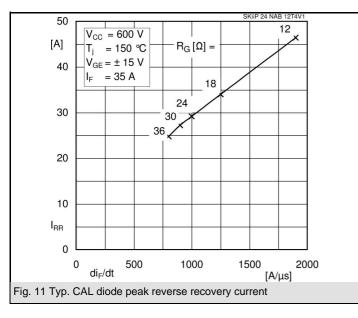


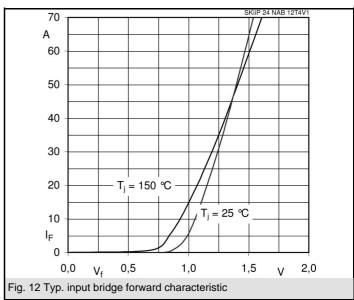


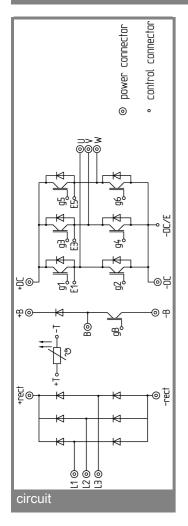


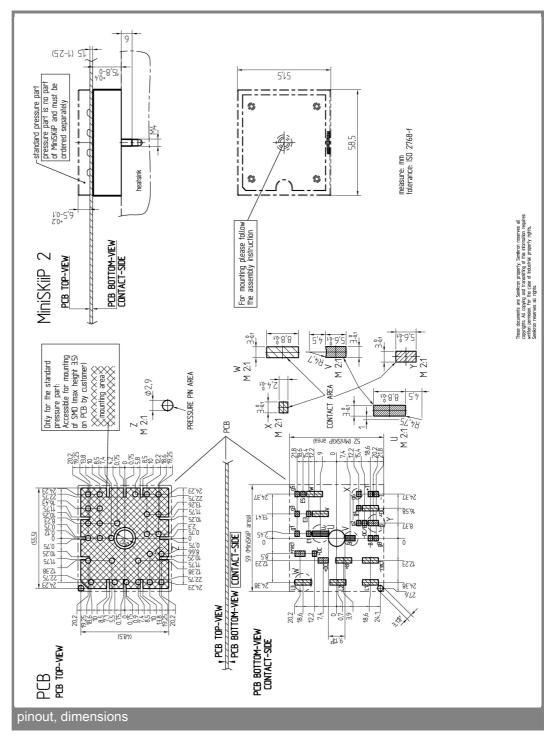












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.